home *** CD-ROM | disk | FTP | other *** search
- .TH TRIMSRF
- 6 "IRIT Version 6.0"
- .SH NAME
- TRIMSRF
-
-
-
- TrimSrfType TRIMSRF( SurfaceType Srf,
- CurveType TrimCrv,
- NumericType HasUpperLevel )
-
- or
-
- TrimSrfType TRIMSRF( SurfaceType Srf,
- ListType TrimCrvs,
- NumericType HasUpperLevel )
-
- Creates a trimmed surface from the provided surface Srf and the
- trimming curve TrimCrv or curves TrimCrvs. If HasUpperLevel
- is FALSE, an additional trimming curve is automatically being added that
- contains the entire parametric domain of Srf. No validity test is
- performed on the trimming curves which are assumed two dimensional curves
- contained in the parametric domain of Srf.
-
- Example:
-
- spts = list( list( ctlpt( E3, 0.1, 0.0, 1.0 ),
- ctlpt( E3, 0.3, 1.0, 0.0 ),
- ctlpt( E3, 0.0, 2.0, 1.0 ) ),
- list( ctlpt( E3, 1.1, 0.0, 0.0 ),
- ctlpt( E3, 1.3, 1.5, 2.0 ),
- ctlpt( E3, 1.0, 2.1, 0.0 ) ),
- list( ctlpt( E3, 2.1, 0.0, 2.0 ),
- ctlpt( E3, 2.3, 1.0, 0.0 ),
- ctlpt( E3, 2.0, 2.0, 2.0 ) ),
- list( ctlpt( E3, 3.1, 0.0, 0.0 ),
- ctlpt( E3, 3.3, 1.5, 2.0 ),
- ctlpt( E3, 3.0, 2.1, 0.0 ) ),
- list( ctlpt( E3, 4.1, 0.0, 1.0 ),
- ctlpt( E3, 4.3, 1.0, 0.0 ),
- ctlpt( E3, 4.0, 2.0, 1.0 ) ) );
- sb = sbspline( 3, 3, spts, list( list( KV_OPEN ), list( KV_OPEN ) ) );
-
- TCrv1 = cbspline( 2,
- list( ctlpt( E2, 0.3, 0.3 ),
- ctlpt( E2, 0.7, 0.3 ),
- ctlpt( E2, 0.7, 0.7 ),
- ctlpt( E2, 0.3, 0.7 ),
- ctlpt( E2, 0.3, 0.3 ) ),
- list( KV_OPEN ) );
- TCrv2 = circle( vector( 0.5, 0.5, 0.0 ), 0.25 );
- TCrv3 = cbspline( 3,
- list( ctlpt( E2, 0.3, 0.3 ),
- ctlpt( E2, 0.7, 0.3 ),
- ctlpt( E2, 0.7, 0.7 ),
- ctlpt( E2, 0.3, 0.7 ) ),
- list( KV_PERIODIC ) );
-
- TSrf1 = TRIMSRF( sb, TCrv1, false );
- TSrf2 = TRIMSRF( sb, TCrv1, true );
- TSrf3 = TRIMSRF( sb, list( TCrv1, TcRv2 * ty( 1 ), TCrv3 * ty( 2 ) ),
- false );
-
- constructs three trimmed surfaces. Tsrf1 contains the outer boundary
- and excludes what is inside TCrv1, TSrf2 contains only the
- domain inside TCrv1. TCrv3 has three holes corresponds to the
- three trimming curves.
-